

Welcome to ACN-Sim

ACN-Data:

	ACN-Data
	Data Client

ACN-Sim:

	ACN-Sim
	Simulator

	Interface

	Charging Network

	Current

	Sites

	Events

	Event Queue

	Analysis

	Models

	ACN-Sim Tutorials
	ACN-Sim Tutorial: Lesson 1

	ACN-Sim Tutorial: Lesson 2

Indices and tables

	Index

	Module Index

	Search Page

ACN-Data

ACN-Data is a publicly accessible dataset for EV charging research.

	Data Client

Data Client

	
class acnportal.acndata.DataClient(api_token, url='https://ev.caltech.edu/api/v1/')

	API client for acndata.

	Parameters

	
	api_token (str) – API token needed to access the acndata API.

	url (str) – Base url for all API calls. Defaults to the standard acndata API url.

	
token

	See api_token in Args.

	Type

	str

	
url

	See url in Args.

	Type

	str

	
count_sessions(site, cond=None)

	Return the number of sessions which match the given query

	Parameters

	
	site (str) – ACN ID from which data should be gathered.

	cond (str) – String of conditions. See API reference for the where parameter.

	Returns

	Number of sessions which match the query.

	Return type

	int

	Raises

	ValueError – Raised if the site name is not valid.

	
get_sessions(site, cond=None, project=None, sort=None, timeseries=False)

	Generator to return sessions from the acndata dataset one at a time.

	Parameters

	
	site (str) – ACN ID from which data should be gathered.

	cond (str) – String of conditions. See API reference for the where parameter.

	Yields

	Dict – Session as a dictionary.

	Raises

	ValueError – Raised if the site name is not valid.

	
get_sessions_by_time(site, start: Optional[datetime.datetime] = None, end: Optional[datetime.datetime] = None, min_energy=None, timeseries=False, count=False)

	Wrapper for get_sessions with condition based on start and end times and a minimum energy delivered.

	Parameters

	
	site (str) – Site where data should be gathered.

	start (datetime) – Only return sessions which began after start.

	end (datetime) – Only return session which began before end.

	min_energy (float) – Only return sessions where the kWhDelivered is greater than or equal to min_energy.

	timeseries (bool) – If True return the time-series of charging rates and pilot signals. Default False.

	count (bool) – If True return the number of sessions which would be returned by the function. Default False.

	Yields

	If count is False see get_sessions else see count_sessions.

	Raises

	See get_sessions/count_sessions.

ACN-Sim

ACN-Sim is a simulation environment for large-scale EV charging research.

	Simulator

	Interface

	Charging Network

	Current

	Sites

	Events

	Event Queue

	Analysis

	Models
	Battery

	EV

	EVSE

Simulator

	
class acnportal.acnsim.simulator.Simulator(network, scheduler, events, start, period=1, signals=None, store_schedule_history=False, verbose=True)

	Central class of the acnsim package.

The Simulator class is the central place where everything about a particular simulation is stored including the
network, scheduling algorithm, and events. It is also where timekeeping is done and orchestrates calling the
scheduling algorithm, sending pilots to the network, and updating the energy delivered to each EV.

	Parameters

	
	network (ChargingNetwork) – The charging network which the simulation will use.

	scheduler (BaseAlgorithm) – The scheduling algorithm used in the simulation.

	events (EventQueue) – Queue of events which will occur in the simulation.

	start (datetime) – Date and time of the first period of the simulation.

	period (int) – Length of each time interval in the simulation in minutes. Default: 1

	signals (Dict[str, ..]) –

	store_schedule_history (bool) – If True, store the scheduler output each time it is run. Note this can use lots
of memory for long simulations.

	
charging_rates_as_df()

	Return the charging rates as a pandas DataFrame, with EVSE id as columns
and iteration as index.

	Returns

	
	A DataFrame containing the charging rates

	of the simulation. Columns are EVSE id, and the index is
the iteration.

	Return type

	pandas.DataFrame

	
get_active_evs()

	Return all EVs which are plugged in and not fully charged at the current time.

Wrapper for self.network.active_evs. See its documentation for more details.

	Returns

	List of all EVs which are plugged in but not fully charged at the current time.

	Return type

	List[EV]

	
index_of_evse(station_id)

	Return the numerical index of the EVSE given by station_id in the (ordered) dictionary
of EVSEs.

	
pilot_signals_as_df()

	Return the pilot signals as a pandas DataFrame

	Returns

	
	A DataFrame containing the pilot signals

	of the simulation. Columns are EVSE id, and the index is
the iteration.

	Return type

	pandas.DataFrame

	
run()

	Run the simulation until the event queue is empty.

The run function is the heart of the simulator. It triggers all actions and keeps the simulator moving forward.
Its actions are (in order):

	Get current events from the event queue and execute them.

	If necessary run the scheduling algorithm.

	Send pilot signals to the network.

	Receive back actual charging rates from the network and store the results.

	Returns

	None

	
update_scheduler(new_scheduler)

	Updates a Simulator’s schedule.

	
exception acnportal.acnsim.simulator.InvalidScheduleError

	Raised when the schedule passed to the simulator is invalid.

Interface

This module contains methods for directly interacting with the _simulator.

	
class acnportal.acnsim.interface.Interface(simulator)

	Interface between algorithms and the ACN Simulation Environment.

	
active_evs

	Returns a list of active EVs for use by the algorithm.

	Returns

	List of EVs currently plugged in and not finished charging

	Return type

	List[EV]

	
allowable_pilot_signals(station_id)

	Returns the allowable pilot signal levels for the specified EVSE.
One may assume an EVSE pilot signal of 0 is allowed regardless
of this function’s return values.

	Parameters

	station_id (str) – The ID of the station for which the allowable rates should be returned.

	Returns

	If the range is continuous or not
list[float]: The sorted set of acceptable pilot signals. If continuous this range will have 2 values

the min and the max acceptable values. [A]

	Return type

	bool

	
current_time

	Get the current time (the current _iteration) of the simulator.

	Returns

	The current _iteration of the simulator.

	Return type

	int

	
evse_phase(station_id)

	Returns the phase angle of the EVSE.

	Parameters

	station_id (str) – The ID of the station for which the allowable rates should be returned.

	Returns

	phase angle of the EVSE. [degrees]

	Return type

	float

	
evse_voltage(station_id)

	Returns the voltage of the EVSE.

	Parameters

	station_id (str) – The ID of the station for which the allowable rates should be returned.

	Returns

	voltage of the EVSE. [V]

	Return type

	float

	
get_constraints()

	Get the constraint matrix and corresponding EVSE ids for the network.

	Returns

	Matrix representing the constraints of the network. Each row is a constraint and each

	Return type

	np.ndarray

	
get_demand_charge(start=None)

	Get the demand charge for the given period. ($/kW)

	Parameters

	start (int) – Time step of the simulation where price vector should begin. If None, uses the current timestep
of the simulation. Default None.

	Returns

	Demand charge for the given period. ($/kW)

	Return type

	float

	
get_prev_peak()

	Get the highest aggregate peak demand so far in the simulation.

	Returns

	Peak demand so far in the simulation. (A)

	Return type

	float

	
get_prices(length, start=None)

	Get a vector of prices beginning at time start and continuing for length periods. ($/kWh)

	Parameters

	
	length (int) – Number of elements in the prices vector. One entry per period.

	start (int) – Time step of the simulation where price vector should begin. If None, uses the current timestep
of the simulation. Default None.

	Returns

	Array of floats where each entry is the price for the corresponding period. ($/kWh)

	Return type

	np.ndarray[float]

	
is_feasible(load_currents, linear=False, violation_tolerance=None, relative_tolerance=None)

	Return if a set of current magnitudes for each load are feasible.

Wraps Network’s is_feasible method.

For a given constraint, the larger of the violation_tolerance
and relative_tolerance is used to evaluate feasibility.

	Parameters

	
	load_currents (Dict[str, List[number]]) – Dictionary mapping load_ids to schedules of charging rates.

	linear (bool) – If True, linearize all constraints to a more conservative but easier to compute constraint by
ignoring the phase angle and taking the absolute value of all load coefficients. Default False.

	violation_tolerance (float) – Absolute amount by which
schedule may violate network constraints. Default
None, in which case the network’s violation_tolerance
attribute is used.

	relative_tolerance (float) – Relative amount by which
schedule may violate network constraints. Default
None, in which case the network’s relative_tolerance
attribute is used.

	Returns

	If load_currents is feasible at time t according to this set of constraints.

	Return type

	bool

	
last_actual_charging_rate

	Return the actual charging rates in the last period for all active EVs.

	Returns

	A dictionary with the session ID as key and actual charging rate as value.

	Return type

	Dict[str, number]

	
last_applied_pilot_signals

	Return the pilot signals that were applied in the last _iteration of the simulation for all active EVs.

Does not include EVs that arrived in the current _iteration.

	Returns

	A dictionary with the session ID as key and the pilot signal as value.

	Return type

	Dict[str, number]

	
max_pilot_signal(station_id)

	Returns the maximum allowable pilot signal level for the specified EVSE.

	Parameters

	station_id (str) – The ID of the station for which the allowable rates should be returned.

	Returns

	the maximum pilot signal supported by this EVSE. [A]

	Return type

	float

	
max_recompute_time

	Return the maximum recompute time of the simulator.

	Returns

	Maximum recompute time of the simulator in number of periods. [periods]

	Return type

	int

	
min_pilot_signal(station_id)

	Returns the minimum allowable pilot signal level for the specified EVSE.

	Parameters

	station_id (str) – The ID of the station for which the allowable rates should be returned.

	Returns

	the minimum pilot signal supported by this EVSE. [A]

	Return type

	float

	
period

	Return the length of each timestep in the simulation.

	Returns

	Length of each time interval in the simulation. [minutes]

	Return type

	int

	
remaining_amp_periods(ev)

	Return the EV’s remaining demand in A*periods.

	Returns

	the EV’s remaining demand in A*periods.

	Return type

	float

	
exception acnportal.acnsim.interface.InvalidScheduleError

	Raised when the schedule passed to the simulator is invalid.

Charging Network

	
class acnportal.acnsim.network.ChargingNetwork(violation_tolerance=1e-05, relative_tolerance=1e-07)

	The ChargingNetwork class describes the infrastructure of the
charging network with information about the types of the charging
station_schedule.

	Parameters

	
	violation_tolerance (float) – Absolute amount by which an input
charging schedule may violate network constrants (A).

	relative_tolerance (float) – Relative amount by which an input
charging schedule may violate network constrants (A).

	
active_evs

	Return all EVs which are connected to an EVSE and which are not already fully charged.

	Returns

	List of EVs which can currently be charged.

	Return type

	List[EV]

	
active_station_ids

	Return IDs for all stations which have an active EV attached.

	Returns

	List of the station_id of all stations which have an active EV attached.

	Return type

	List[str]

	
add_constraint(current: acnportal.acnsim.network.current.Current, limit: float, name: Optional[str] = None) → None

	Add an additional constraint to the constraint DataFrame.

	Parameters

	
	current (Current) – Aggregate current which is constrained.
See Current for more info.

	limit (float) – Upper limit on the aggregate current.

	name (str) – Name of this constraint.

	Returns

	None

	
constraint_current(input_schedule, constraints=None, time_indices=None, linear=False)

	Return the aggregate currents subject to the given constraints. If constraints=None,
return all aggregate currents.

	Parameters

	
	input_schedule (np.Array) – 2-D matrix with each row corresponding to an EVSE and each
column corresponding to a time index in the schedule.

	constraints (List[str]) – List of constraint id’s for which to calculate aggregate current. If
None, calculates aggregate currents for all constraints.

	time_indices (List[int]) – List of time indices for which to calculate aggregate current. If None,
calculates aggregate currents for all timesteps.

	linear (bool) – If True, linearize all constraints to a more conservative but easier to compute constraint by
ignoring the phase angle and taking the absolute value of all load coefficients. Default False.

	Returns

	Aggregate currents subject to the given constraints.

	Return type

	np.Array

	
current_charging_rates

	Return the current actual charging rate of all EVSEs in the network. If no EV is
attached to a given EVSE, that EVSE’s charging rate is 0. In the returned array, the
charging rates are given in the same order as the list of EVSEs given by station_ids

	Returns

	numpy ndarray of actual charging rates of all EVSEs in the network.

	Return type

	np.Array

	
get_ev(station_id)

	Return the EV attached to the specified EVSE.

	Parameters

	station_id (str) – ID of the EVSE.

	Returns

	The EV attached to the specified station.

	Return type

	EV

	
is_feasible(schedule_matrix, linear=False, violation_tolerance=None, relative_tolerance=None)

	Return if a set of current magnitudes for each load are feasible.

For a given constraint, the larger of the violation_tolerance
and relative_tolerance is used to evaluate feasibility.

	Parameters

	
	schedule_matrix (np.Array) – 2-D matrix with each row corresponding to an EVSE and each
column corresponding to a time index in the schedule.

	linear (bool) – If True, linearize all constraints to a more conservative but easier to compute constraint by
ignoring the phase angle and taking the absolute value of all load coefficients. Default False.

	violation_tolerance (float) – Absolute amount by which
schedule_matrix may violate network constraints. Default
None, in which case the network’s violation_tolerance
attribute is used.

	relative_tolerance (float) – Relative amount by which
schedule_matrix may violate network constraints. Default
None, in which case the network’s relative_tolerance
attribute is used.

	Returns

	If load_currents is feasible at time t according to this set of constraints.

	Return type

	bool

	
phase_angles

	Return dictionary of phase angles for all EVSEs in the network.

	Returns

	Dictionary mapping EVSE ids their input phase angle. [degrees]

	Return type

	Dict[str, float]

	
plugin(ev, station_id)

	Attach EV to a specific EVSE.

	Parameters

	
	ev (EV) – EV object which will be attached to the EVSE.

	station_id (str) – ID of the EVSE.

	Returns

	None

	Raises

	KeyError – Raised when the station id has not yet been registered.

	
register_evse(evse, voltage, phase_angle)

	Register an EVSE with the network so it will be accessible to the rest of the simulation.

	Parameters

	
	evse (EVSE) – An EVSE object.

	voltage (float) – Voltage feeding the EVSE (V).

	phase_angle (float) – Phase angle of the voltage/current feeding the EVSE (degrees).

	Returns

	None

	
remove_constraint(name)

	Remove a network constraint.

	Parameters

	name (str) – Name of constriant to remove.

	Returns

	None

	
station_ids

	Return the IDs of all registered EVSEs.

	Returns

	List of all registered EVSE IDs.

	Return type

	List[str]

	
unplug(station_id)

	Detach EV from a specific EVSE.

	Parameters

	station_id (str) – ID of the EVSE.

	Returns

	None

	Raises

	KeyError – Raised when the station id has not yet been registered.

	
update_constraint(name, current: acnportal.acnsim.network.current.Current, limit, new_name=None)

	Update a network constraint with a new aggregate current, limit, and name.

	Parameters

	
	name (str) – Name of constriant to update.

	current (Current) – New current to update constraint with

	limit (float) – New upper limit to update constraint with

	new_name (str) – New name to give constraint

	Returns

	None

	
update_pilots(pilots, i, period)

	Update the pilot signal sent to each EV. Also triggers the EVs to charge at the specified rate.

Note that if a pilot is not sent to an EVSE the associated EV WILL NOT charge during that period.
If station_id is pilots or a list does not include the current time index, a 0 pilot signal is passed to the
EVSE.
Station IDs not registered in the network are silently ignored.

	Parameters

	
	pilots (np.Array) – numpy array with a row for each station_id
and a column for each time. Each entry in the Array corresponds to
a charging rate (in A) at the staion given by the row at a time given by the column.

	i (int) – Current time index of the simulation.

	period (float) – Length of the charging period. [minutes]

	Returns

	None

	
voltages

	Return dictionary of voltages for all EVSEs in the network.

	Returns

	Dictionary mapping EVSE ids their input voltage. [V]

	Return type

	Dict[str, float]

	
exception acnportal.acnsim.network.StationOccupiedError

	Exception which is raised when trying to add an EV to an EVSE which is already occupied.

Current

	
class acnportal.acnsim.network.Current(loads: Union[Dict[str, SupportsFloat], str, List[str], pandas.core.series.Series, None] = None)

	A simple representation of currents as an extension of pandas Series.
Includes addition, subtraction, and multiplication (by scalar) operators.

	
loads

	Dictionary which maps a load_id to its coefficient in

	Type

	Dict[str, number]

	
the aggregate current.

	

	Parameters

	loads (Dict[str, number], str, or List[str], pd.Series) – If dict, a dictionary
mapping load_ids to coefficients. If str a load_id. If list, a list of
load_ids. Default None. If None, loads will begin as an empty dict.

Sites

	
class acnportal.acnsim.network.sites.CaltechACN

	Wrapper around caltech_acn for backward compatibility. Will be removed in future release.

Events

	
class acnportal.acnsim.events.Event(timestamp)

	Base class for all events.

	Parameters

	timestamp (int) – Timestamp when an event occurs (periods)

	
timestamp

	See args.

	Type

	int

	
event_type

	Name of the event type.

	Type

	str

	
precedence

	Used to order occurrence for events that happen in the same timestep. Higher precedence
events occur before lower precedence events.

	Type

	float

	
type

	Legacy accessor for event_type. This will be removed in a future
release.

	
class acnportal.acnsim.events.PluginEvent(timestamp, ev)

	Subclass of Event for EV plugins.

	Parameters

	
	timestamp (int) – See Event.

	ev (EV) – The EV which will be plugged in.

	
class acnportal.acnsim.events.UnplugEvent(timestamp, station_id, session_id)

	Subclass of Event for EV unplugs.

	Parameters

	
	timestamp (int) – See Event.

	station_id (str) – ID of the EVSE where the EV is to be unplugged.

	session_id (str) – ID of the session which should be ended.

	
class acnportal.acnsim.events.RecomputeEvent(timestamp)

	Subclass of Event for when the algorithm should be recomputed.

Event Queue

	
class acnportal.acnsim.events.EventQueue(events=None)

	Queue which stores simulation events.

	Parameters

	events (List[Event]) – A list of Event-like objects.

	
add_event(event)

	Add an event to the queue.

	Parameters

	event (Event like) – An Event-like object.

	Returns

	None

	
add_events(events)

	Add multiple events at a time to the queue.

	Parameters

	events (List[Event like]) – A list of Event-like objects.

	Returns

	None

	
empty()

	Return if the queue is empty.

	Returns

	True if the queue is empty.

	Return type

	bool

	
get_current_events(timestep)

	Return all events occurring before or during timestep.

	Parameters

	timestep (int) – Time index in periods.

	Returns

	List of all events occurring before or during timestep.

	Return type

	List[Event]

	
get_event()

	Return the next event in the queue.

	Returns

	The next event in the queue.

	Return type

	Event like

	
get_last_timestamp()

	Return the timestamp of the last event (chronologically) in the event queue

	Returns

	
	Last timestamp in the event queue, or None if the

	event queue is empty.

	Return type

	int

	
queue

	Return the queue of events

Analysis

	
acnportal.acnsim.analysis.aggregate_current(sim)

	Calculate the time series of aggregate current of all EVSEs within a simulation.

	Parameters

	sim (Simulator) – A Simulator object which has been run.

	Returns

	A numpy ndarray of the aggregate current at each time. [A]

	Return type

	np.Array

	
acnportal.acnsim.analysis.aggregate_power(sim)

	Calculate the time series of aggregate power of all EVSEs within a simulation.

	Parameters

	sim (Simulator) – A Simulator object which has been run.

	Returns

	A numpy ndarray of the aggregate power at each time. [kW]

	Return type

	np.Array

	
acnportal.acnsim.analysis.constraint_currents(sim, return_magnitudes=False, constraint_ids=None)

	Calculate the time series of current for each constraint in the ChargingNetwork for a simulation.

	Parameters

	
	sim (Simulator) – A Simulator object which has been run.

	return_magnitudes (bool) – If true, return constraint currents as real magnitudes instead of complex numbers.

	constraint_ids (List[str]) – List of constraint names for which the current should be returned. If None, return
all constraint currents.

	Returns

	
	A dictionary mapping the name of a constraint to a numpy array of the current subject to

	that constraint at each time.

	Return type

	Dict (str, np.Array)

	
acnportal.acnsim.analysis.current_unbalance(sim, phase_ids, unbalance_type='NEMA', type=None)

	Calculate the current unbalance for each time in simulation.

Supports two definitions of unbalance.
1) The NEMA definition defined as the ratio of the maximum deviation of an RMS current from the average RMS current

	over the average RMS current.

	(max(|I_a|, |I_b|, |I_c|) - 1/3 (|I_a| + |I_b| + |I_c|)) / (1/3 (|I_a| + |I_b| + |I_c|))

See https://www.powerstandards.com/Download/Brief%20Discussion%20of%20Unbalance%20Definitions.pdf for more info.

	Parameters

	
	sim (Simulator) – A Simulator object which has been run.

	phase_ids (List[str]) – List of length 3 where each element is the identifier of phase A, B, and C respectively.

	unbalance_type (str) – Method to use for calculating phase unbalance. Acceptable values are ‘NEMA’.

	Returns

	Time series of current unbalance as a list with one value per timestep.

	Return type

	List[float]

	
acnportal.acnsim.analysis.datetimes_array(sim)

	Return a numpy array of datetimes over which the simulation was
run.

The resolution of the datetimes list is equal to the period of the
simulation, and the number of datetimes in the returned list is
equal to teh number of iterations of the simulation.

	Parameters

	sim (Simulator) – A Simulator object which has been run.

	Returns

	
	List of datetimes over which the

	simulation was run.

	Return type

	np.ndarray[np.datetime64]

	Warns

	UserWarning – If this is called before sim is complete.

	
acnportal.acnsim.analysis.demand_charge(sim, tariff=None)

	Calculate the total demand charge of the simulation.

Note this is only an accurate depiction of true demand charge if the simulation is exactly one billing period
long.

	Parameters

	
	sim (Simulator) – A Simulator object which has been run.

	tariff (TimeOfUseTariff) – Tariff structure to use when calculating energy costs.

	Returns

	Total demand charge incurred by the simulation ($)

	Return type

	float

	
acnportal.acnsim.analysis.energy_cost(sim, tariff=None)

	Calculate the total energy cost of the simulation.

	Parameters

	
	sim (Simulator) – A Simulator object which has been run.

	tariff (TimeOfUseTariff) – Tariff structure to use when calculating energy costs.

	Returns

	Total energy cost of the simulation ($)

	Return type

	float

	
acnportal.acnsim.analysis.proportion_of_demands_met(sim, threshold=0.1)

	Calculate the percentage of charging sessions where the energy request was met.

	Parameters

	
	sim (Simulator) – A Simulator object which has been run.

	threshold (float) – Close to finished a session should be to be considered finished. Default: 0.1. [kW]

	Returns

	Proportion of sessions where the energy demand was fully met.

	Return type

	float

	
acnportal.acnsim.analysis.proportion_of_energy_delivered(sim)

	Calculate the percentage of total energy delivered over total energy requested.

	Parameters

	sim (Simulator) – A Simulator object which has been run.

	Returns

	Proportion of total energy requested which was delivered during the simulation.

	Return type

	float

Models

Battery

	
class acnportal.acnsim.models.battery.Battery(capacity, init_charge, max_power)

	This class models the behavior of a battery and battery management system (BMS).

	Parameters

	
	capacity (float) – Capacity of the battery [kWh]

	init_charge (float) – Initial charge of the battery [kWh]

	max_power (float) – Maximum charging rate of the battery [kW]

	
charge(pilot, voltage, period)

	Method to “charge” the battery

	Parameters

	
	pilot (float) – Pilot signal passed to the battery. [A]

	voltage (float) – AC voltage provided to the battery charger. [V]

	period (float) – Length of the charging period. [minutes]

	Returns

	actual charging rate of the battery. [A]

	Return type

	float

	Raises

	ValueError – if voltage or period are <= 0.

	
current_charging_power

	Returns the current draw of the battery on the AC side.

	
max_charging_power

	Returns the maximum charging power of the Battery.

	
reset(init_charge=None)

	Reset battery to initial state. If init_charge is not
given (is None), the battery is reset to its initial charge
on initialization.

	Parameters

	init_charge (float) – charge battery should be reset to. [acnsim units]

	Returns

	None

	
class acnportal.acnsim.models.battery.Linear2StageBattery(capacity, init_charge, max_power, noise_level=0, transition_soc=0.8, charge_calculation='continuous')

	Extends Battery with a simple piecewise linear model of battery dynamics based on SoC.

Battery model based on a piecewise linear approximation of battery behavior. The battery will charge at the
minimum of max_rate and the pilot until it reaches _transition_soc. After this, the maximum charging rate of the
battery will decrease linearly to 0 at 100% state of charge.

For more info on model: https://www.sciencedirect.com/science/article/pii/S0378775316317396

All public attributes are the same as Battery.

	Parameters

	
	noise_level (float) – Standard deviation of the noise to add to the charging process. (kW)

	transition_soc (float) – State of charging when transitioning from constant current to constraint voltage.

	charge_calculation (str) – If ‘stepwise’, use the charging
method from a previous version of acnportal, which
assumes a constant maximal charging rate for the entire
timestep during which the pilot signal is input. This
charging method is less accurate than the _charge method,
and should only be used for reproducing results from
older versions of acnportal.

If ‘continuous’ or not provided, use the _charge method,
which assumes a continuously varying maximal charging rate.

	
charge(pilot, voltage, period)

	Method to “charge” the battery based on a two-stage linear
battery model.

Uses one of
{_charge, _charge_stepwise}
to charge the battery depending on the value of the
charge_calculation attribute of this object.

	
acnportal.acnsim.models.battery.batt_cap_fn(requested_energy, stay_dur, voltage, period)

	This function takes as input a requested energy, stay duration,
and measurement parameters (voltage & period) and calculates the
minimum capacity linear 2 stage battery such that it is
feasible to deliver requested_energy in stay_dur periods.

The function returns this minimum total capacity along with an
initial capacity, which is the maximum initial capacity the battery
with given total capacity may have such that it is feasible (after
charging at max rate) to deliver requested_energy in stay_dur
periods. Thus, the returned total and initial capacities maximize
the amount of time the battery behaves non-ideally during charging.

	Parameters

	
	requested_energy (float) – Energy requested by this EV. If this
fit uses data from ACN-Data, this requested_energy is the
amount of energy actually delivered in real life.

	stay_dur (float) – Number of periods the EV stayed.

	voltage (float) – Voltage at which the battery is charged (V).

	period (float) – Number of minutes in a period (minutes).

EV

	
class acnportal.acnsim.models.ev.EV(arrival, departure, requested_energy, station_id, session_id, battery, estimated_departure=None)

	Class to model the behavior of an Electrical Vehicle (ev).

	Parameters

	
	arrival (int) – Arrival time of the ev. [periods]

	departure (int) – Departure time of the ev. [periods]

	requested_energy (float) – Energy requested by the ev on arrival. [kWh]

	station_id (str) – Identifier of the station used by this ev.

	session_id (str) – Identifier of the session belonging to this ev.

	battery (Battery-like) – Battery object to be used by the EV.

	
arrival

	Return the arrival time of the EV.

	
charge(pilot, voltage, period)

	Method to “charge” the ev.

	Parameters

	
	pilot (float) – Pilot signal passed to the battery. [A]

	voltage (float) – AC voltage provided to the battery charger. [V]

	period (float) – Length of the charging period. [minutes]

	Returns

	Actual charging rate of the ev. [A]

	Return type

	float

	
current_charging_rate

	Return the current charging rate of the EV. (float)

	
departure

	Return the departure time of the EV. (int)

	
energy_delivered

	Return the total energy delivered so far in this charging session. (float)

	
estimated_departure

	Return the estimated departure time of the EV.

	
fully_charged

	Return True if the EV’s demand has been fully met. (bool)

	
maximum_charging_power

	Return the maximum charging power of the battery.

	
percent_remaining

	Return the percent of demand which still needs to be fulfilled. (float)

Defined as the ratio of remaining demand and requested energy.

	
remaining_demand

	Return the remaining energy demand of this session. (float)

Defined as the difference between the requested energy of the session and the energy delivered so far.

	
requested_energy

	Return the energy request of the EV for this session. (float) [acnsim units].

	
reset()

	Reset battery back to its initialization. Also reset energy delivered.

	Returns

	None.

	
session_id

	Return the unique session identifier for this charging session. (str)

	
station_id

	Return the unique identifier for the EVSE used for this charging session.

EVSE

	
class acnportal.acnsim.models.evse.BaseEVSE(station_id)

	Abstract base class to model Electric Vehicle Supply Equipment
(charging station). This class is meant to be inherited from to
implement new EVSEs.

Subclasses must implement the max_rate, allowable_pilot_signals,
and _valid_rate methods.

	
_station_id

	Unique identifier of the EVSE.

	Type

	str

	
_ev

	EV currently connected the the EVSE.

	Type

	EV

	
_current_pilot

	Pilot signal for the current time step.
[acnsim units]

	Type

	float

	
is_continuous

	If True, this EVSE accepts a continuous
range of pilot signals. If False, this EVSE accepts only
a discrete set of pilot signals.

	Type

	bool

	
allowable_pilot_signals

	Returns the allowable pilot signal levels for this EVSE.

NOT IMPLEMENTED IN BaseEVSE. This method MUST be implemented in
all subclasses.

	Returns

	
	List of acceptable pilot signal values or an

	interval of acceptable pilot signal values.

	Return type

	List[float]

	
current_pilot

	Return pilot signal for the current time step. (float)

	
ev

	Return EV currently connected the the EVSE. (EV)

	
max_rate

	Return maximum charging current allowed by the EVSE. (float)

	
min_rate

	Return minimum charging current allowed by the EVSE. (float)

	
plugin(ev)

	Method to attach an EV to the EVSE.

	Parameters

	ev (EV) – EV which should be attached to the EVSE.

	Returns

	None.

	Raises

	StationOccupiedError – Exception raised when plugin is called by an EV is already attached to the EVSE.

	
set_pilot(pilot, voltage, period)

	Apply a new pilot signal to the EVSE.

Before applying the new pilot, this method first checks if the pilot is allowed. If it is not, an
InvalidRateError is raised. If the rate is valid, it is forwarded on to the attached EV if one is present.
This method is also where EV charging is triggered. Thus it must be called in every time time period where the
attached EV should receive charge.

	Parameters

	
	pilot (float) – New pilot (control signal) to be sent to the attached EV. [A]

	voltage (float) – AC voltage provided to the battery charger. [V]

	period (float) – Length of the charging period. [minutes]

	Returns

	None.

	Raises

	InvalidRateError – Exception raised when pilot is not allowed by the EVSE.

	
station_id

	Return unique identifier of the EVSE. (str)

	
unplug()

	Method to remove an EV currently attached to the EVSE.

Sets ev to None and current_pilot to 0.

	Returns

	None

	
class acnportal.acnsim.models.evse.DeadbandEVSE(station_id, deadband_end=6, max_rate=inf, min_rate=None)

	Subclass of BaseEVSE which enforces the J1772 deadband between
0 - 6 A.

	
See BaseEVSE attributes.

	

	
_max_rate

	Maximum charging current allowed by the EVSE.

	Type

	float

	
_deadband_end

	Upper end of the deadband. Pilot signals
between 0 and this number are not allowed for this EVSE.

	Type

	float

	
allowable_pilot_signals

	Returns the allowable pilot signal levels for this EVSE.

It is implied that a 0 A signal is allowed.

Implements abstract method allowable_pilot_signals from
BaseEVSE.

	Returns

	
	List of 2 values: the min and max

	acceptable values.

	Return type

	list[float]

	
deadband_end

	Return deadband end of the EVSE. (float)

	
max_rate

	Return maximum charging current allowed by the EVSE. (float)

	
class acnportal.acnsim.models.evse.EVSE(station_id, max_rate=inf, min_rate=0)

	This class of EVSE allows for charging in a continuous range
from min_rate to max_rate.

	
See BaseEVSE attributes.

	

	
_max_rate

	Maximum charging current allowed by the EVSE.

	Type

	float

	
_min_rate

	Minimum charging current allowed by the EVSE.

	Type

	float

	
allowable_pilot_signals

	Returns the allowable pilot signal levels for this EVSE.

Implements abstract method allowable_pilot_signals from
BaseEVSE.

	Returns

	
	List of 2 values: the min and max

	acceptable values.

	Return type

	list[float]

	
max_rate

	Return maximum charging current allowed by the EVSE. (float)

	
min_rate

	Return minimum charging current allowed by the EVSE. (float)

	
class acnportal.acnsim.models.evse.FiniteRatesEVSE(station_id, allowable_rates)

	Subclass of EVSE which allows for finite allowed rate sets.

Most functionality remains the same except those differences noted
below.

	
See BaseEVSE attributes.

	

	
allowable_rates

	Iterable of rates which are allowed
by the EVSE. On initialization, allowable_rates is converted
into a list of rates in increasing order that includes 0 and
contains no duplicate values.

	Type

	iterable

	
allowable_pilot_signals

	Returns the allowable pilot signal levels for this EVSE.

Implements abstract method allowable_pilot_signals from
BaseEVSE.

	Returns

	List of allowable pilot signals.

	Return type

	list[float]

	
max_rate

	Return maximum charging current allowed by the EVSE. (float)

	
min_rate

	Return minimum charging current allowed by the EVSE. (float)

	
exception acnportal.acnsim.models.evse.InvalidRateError

	Raised when an invalid pilot signal is passed to an EVSE.

	
exception acnportal.acnsim.models.evse.StationOccupiedError

	Raised when a plugin event is called for an EVSE that already has an EV attached.

	
acnportal.acnsim.models.evse.get_evse_by_type(station_id, evse_type)

	Factory to produce EVSEs of a given type.

	Parameters

	
	station_id (str) – Unique identifier of the EVSE.

	evse_type (str) – Type of the EVSE. Currently supports ‘BASIC’, ‘AeroVironment’, and ‘ClipperCreek’.

	Returns

	an EVSE of the specified type and with the specified id.

	Return type

	EVSE

ACN-Sim Tutorials

ACN-Sim is a simulation environment for large-scale EV charging research.

	ACN-Sim Tutorial: Lesson 1

	ACN-Sim Tutorial: Lesson 2

If running in a new enviroment, such as Google Colab, run this first.

[1]:

!git clone https://github.com/zach401/acnportal.git
!pip install acnportal/.

ACN-Sim Tutorial: Lesson 1

Running an Experiment

by Zachary Lee

Last updated: 03/19/2019

In this first lesson we will learn how to setup and run a simulation using a built-in scheduling algorithm. After running the simulation we will learn how to use the analysis subpackage to analyze the results of the simulation.

[2]:

import pytz
from datetime import datetime

import matplotlib.pyplot as plt

from acnportal import acnsim
from acnportal import algorithms

Experiment Parameters

Next we need to define some parameters of the experiment. We define these at the begining of the file so they can be used consistently when setting up the simulation.

[3]:

Timezone of the ACN we are using.
timezone = pytz.timezone('America/Los_Angeles')

Start and End times are used when collecting data.
start = timezone.localize(datetime(2018, 9, 5))
end = timezone.localize(datetime(2018, 9, 6))

How long each time discrete time interval in the simulation should be.
period = 5 # minutes

Voltage of the network.
voltage = 220 # volts

Default maximum charging rate for each EV battery.
default_battery_power = 32 * voltage / 1000 # kW

Identifier of the site where data will be gathered.
site = 'caltech'

Network

An important part of any simulation is the ChargingNetwork on which it runs. The ChargingNetwork is a description of the physical system and contains both the set of EVSEs which make up the network as well as a constraint_matrix which represents the electrical infrastructure of the network. You can manually configure this network using the register_evse() and add_constraint() methods in ChargingNetwork or you can use a predefined network available in the sites module. In this case we use the
predefined CaltechACN network.

[4]:

For this experiment we use the predefined CaltechACN network.
cn = acnsim.sites.caltech_acn(basic_evse=True, voltage=voltage)

Events

Events are what drive action in the simulator. Events are stored in an EventQueue. This queue can be built manually by creating an Event object and using the add_event() or add_events() methods, or can be generated automatically.

In this case we will use acndata_events.generate_events() which is part of the events subpackage. acnevents provides utilities for generating events from the Caltech Charging Dataset. These events are based on real behavior of users charging actual EVs, so it is extremely valuable for running realistic simulations. In order to access the API we need a token. For now we can use the demo token, but it is highly recomended that you register for your own free token at ev.caltech.edu.

[5]:

API_KEY = 'DEMO_TOKEN'
events = acnsim.acndata_events.generate_events(API_KEY, site, start, end, period, voltage, default_battery_power)

Scheduling Algorithm

The primary purpose of acnportal is to evaluate scheduling algorithms for large-scale EV charging. We will discuss how develop your own custom algorithm in Lesson 2, for now we will use one of the builtin scheduling algorithms, UncontrolledCharging.

[6]:

sch = algorithms.UncontrolledCharging()

Simulator

We next need to set up our simulation enviroment using the parts we have already defined. The Simulator constructor takes in a ChargingNetwork, Algorithm, and EventQueue. We also provide the start time of the simulation which all internal timestamps will be measured relative to. Finally we pass in the length of each period as well as a parameter called max_recomp. max_recomp controls how often the scheduling algorithm is called when no events occur. Here we have set max_recomp to 1, meaning
the scheduling algorithm will be called every time step. If we had set it to 5, up to 5 time steps could occur before the scheduling algorithm was called. Note that the scheduling algorithm is always called when an event occurs. In this case, UncontrolledCharging only provides one charging rate, so it must be used with a max_recomp of 1.

[7]:

sim = acnsim.Simulator(cn, sch, events, start, period=period, verbose=False)

To execute the simulation we simply call the run() function.

[8]:

sim.run()

/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 84. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 85. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 86. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 87. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 88. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 89. Max violation is 47.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 90. Max violation is 47.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 91. Max violation is 47.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 92. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 93. Max violation is 47.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 94. Max violation is 47.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 95. Max violation is 79.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 96. Max violation is 79.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 97. Max violation is 79.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 98. Max violation is 79.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 99. Max violation is 79.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 100. Max violation is 79.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 101. Max violation is 79.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 102. Max violation is 79.99999 A on CC Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 103. Max violation is 79.99999 A on CC Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 104. Max violation is 79.99999 A on CC Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 105. Max violation is 111.99999 A on CC Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 106. Max violation is 112.06009587279908 A on Secondary A at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 107. Max violation is 83.18930259135914 A on Secondary A at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 108. Max violation is 112.06009587279908 A on Secondary A at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 109. Max violation is 110.11980759427189 A on Secondary A at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 110. Max violation is 138.51257366605256 A on Secondary A at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 111. Max violation is 138.51257366605256 A on Secondary A at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 112. Max violation is 27.891530995727067 A on Secondary A at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 113. Max violation is 15.999989999999997 A on CC Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 114. Max violation is 15.999989999999997 A on CC Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 115. Max violation is 15.999989999999997 A on CC Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 116. Max violation is 15.999989999999997 A on CC Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 117. Max violation is 15.999989999999997 A on CC Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 162. Max violation is 15.999989999999997 A on CC Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 245. Max violation is 47.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 246. Max violation is 47.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 247. Max violation is 47.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 248. Max violation is 47.99999 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 249. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 250. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 251. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 252. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 253. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 254. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,
/home/docs/checkouts/readthedocs.org/user_builds/acnportal/envs/stable/lib/python3.7/site-packages/acnportal-0.2.2-py3.7.egg/acnportal/acnsim/simulator.py:219: UserWarning: Invalid schedule provided at iteration 255. Max violation is 15.999989999999997 A on AV Pod at time index 0.
 UserWarning,

Analysis

Once the simulator has been run, we can analyze the results. For this purpose acnsim offers a package called analysis. One thing we may be interested in is the proportion of total users’ energy demand that we were able to meet. To find this we can use the proportion_of_energy_delivered() method from the analysis subpackage. The only argument to this function is the Simulator object itself.

[9]:

total_energy_prop = acnsim.proportion_of_energy_delivered(sim)
print('Proportion of requested energy delivered: {0}'.format(total_energy_prop))

Proportion of requested energy delivered: 1.0

We may also be interested in the peak demand of the system as this determines our big the root transformers and cables in our system must be as well as the demand charge we may have to pay. The Simulator has a built in property which keeps track of this peak usage called peak.

[10]:

print('Peak aggregate current: {0} A'.format(sim.peak))

Peak aggregate current: 704.0 A

Finally, we can plot the output of our simulation. For now we will just plot total aggregate current draw:

[11]:

Plotting aggregate current
agg_current = acnsim.aggregate_current(sim)
plt.plot(agg_current)
plt.xlabel('Time (periods)')
plt.ylabel('Current (A)')
plt.title('Total Aggregate Current')
plt.show()

[image: ../../_images/tutorials_acnsim_lesson1_21_0.png]

If running in a new environment, such as Google Colab, run this first.

[1]:

!git clone https://github.com/zach401/acnportal.git
!pip install acnportal/.

ACN-Sim Tutorial: Lesson 2

Implementing a Custom Algorithm

by Zachary Lee

Last updated: 03/19/2019

In this lesson we will learn how to develop a custom algorithm and run it using ACN-Sim. For this example we will be writing an Earliest Deadline First Algorithm. This algorithm is already available as part of the SortingAlgorithm in the algorithms package, so we will compare the results of our implementation with the included one.

Custom Algorithm

All custom algorithms should inherit from the abstract class BaseAlgorithm. It is the responsibility of all derived classes to implement the schedule method. This method takes as an input a list of EVs which are currently connected to the system but have not yet finished charging. Its output is a dictionary which maps a station_id to a list of charging rates. Each charging rate is valid for one period measured relative to the current period.

For Example: * schedule[‘abc’][0] is the charging rate for station ‘abc’ during the current period * schedule[‘abc’][1] is the charging rate for the next period * and so on.

If an algorithm only produces charging rates for the current time period, the length of each list should be 1. If this is the case, make sure to also set the maximum resolve period to be 1 period so that the algorithm will be called each period. An alternative is to repeat the charging rate a number of times equal to the max recompute period.

As mentioned previously our new algorithm should inherit from BaseAlgorithm or a subclass of it.

We can override the init() method if we need to pass additional configuration information to the algorithm. In this case we pass in the increment which will be used when searching for a feasible rate.

We next need to override the schedule() method. The signature of this method should remain the same, as it is called internally in Simulator. If an algorithm needs additional parameters consider passing them through the constructor.

[2]:

from acnportal.algorithms import BaseAlgorithm

class EarliestDeadlineFirstAlgo(BaseAlgorithm):
 """ Algorithm which assigns charging rates to each EV in order or departure time.

 Implements abstract class BaseAlgorithm.

 For this algorithm EVs will first be sorted by departure time. We will then allocate as much
 current as possible to each EV in order until the EV is finished charging or an infrastructure
 limit is met.

 Args:
 increment (number): Minimum increment of charging rate. Default: 1.
 """
 def __init__(self, increment=1):
 super().__init__()
 self._increment = increment
 self.max_recompute = 1

 def schedule(self, active_evs):
 schedule = {ev.station_id: [0] for ev in active_evs}

 # Next, we sort the active_evs by their departure time.
 sorted_evs = sorted(active_evs, key=lambda x: x.departure)

 # We now iterate over the sorted list of EVs.
 for ev in sorted_evs:
 # First try to charge the EV at its maximum rate. Remember that each schedule value
 # must be a list, even if it only has one element.
 schedule[ev.station_id] = [self.interface.max_pilot_signal(ev.station_id)]

 # If this is not feasible, we will reduce the rate.
 # interface.is_feasible() is one way to interact with the constraint set
 # of the network. We will explore another more direct method in lesson 3.
 while not self.interface.is_feasible(schedule, 0):

 # Since the maximum rate was not feasible, we should try a lower rate.
 schedule[ev.station_id][0] -= self._increment

 # EVs should never charge below 0 (i.e. discharge) so we will clip the value at 0.
 if schedule[ev.station_id][0] < 0:
 schedule[ev.station_id] = [0]
 break
 return schedule

Note the structure of the schedule dict which is returned should be something like:

{
 'CA-301': [32, 32, 32, 16, 16, ..., 8],
 'CA-302': [8, 13, 13, 15, 6, ..., 0],
 ...,
 'CA-408': [24, 24, 24, 24, 0, ..., 0]
}

For the special case when an algorithm only calculates a target rate for the next time interval instead of an entire schedule of rates, the structure should be:

{
 'CA-301': [32],
 'CA-302': [8],
 ...,
 'CA-408': [24]
}

Note that these are single element lists and NOT floats or integers.

Running the Algorithm

Now that we have implemented our algorithm, we can try it out using the same experiment setup as in lesson 1. The only difference will be which scheduling algorithm we use. For fun, lets compare our algorithm against to included implementation of the earliest deadline first algorithm.

[3]:

from datetime import datetime
import pytz
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from copy import deepcopy

from acnportal import algorithms
from acnportal import acnsim

-- Experiment Parameters ---
timezone = pytz.timezone('America/Los_Angeles')
start = timezone.localize(datetime(2018, 9, 5))
end = timezone.localize(datetime(2018, 9, 6))
period = 5 # minute
voltage = 220 # volts
default_battery_power = 32 * voltage / 1000 # kW
site = 'caltech'

-- Network ---
cn = acnsim.sites.caltech_acn(basic_evse=True, voltage=voltage)

-- Events --
API_KEY = 'DEMO_TOKEN'
events = acnsim.acndata_events.generate_events(API_KEY, site, start, end, period, voltage, default_battery_power)

-- Scheduling Algorithm --
sch = EarliestDeadlineFirstAlgo(increment=1)
sch2 = algorithms.SortedSchedulingAlgo(algorithms.least_laxity_first)

[4]:

-- Simulator ---
sim = acnsim.Simulator(deepcopy(cn), sch, deepcopy(events), start, period=period, verbose=False)
sim.run()

[5]:

For comparison we will also run the builtin earliest deadline first algorithm
sim2 = acnsim.Simulator(deepcopy(cn), sch2, deepcopy(events), start, period=period, verbose=False)
sim2.run()

Results

We can now compare the two algorithms side by side by looking that the plots of aggregated current. We see from these plots that our implementation matches th included one quite well. If we look closely however, we might see a small difference. This is because the included algorithm uses a more efficient bisection based method instead of our simpler linear search to find a feasible rate.

[6]:

Get list of datetimes over which the simulations were run.
sim_dates = mdates.date2num(acnsim.datetimes_array(sim))
sim2_dates = mdates.date2num(acnsim.datetimes_array(sim2))

Set locator and formatter for datetimes on x-axis.
locator = mdates.AutoDateLocator(maxticks=6)
formatter = mdates.ConciseDateFormatter(locator)

fig, axs = plt.subplots(1, 2, sharey=True, sharex=True)
axs[0].plot(sim_dates, acnsim.aggregate_current(sim), label='Our EDF')
axs[1].plot(sim2_dates, acnsim.aggregate_current(sim2), label='Included EDF')
axs[0].set_title('Our EDF')
axs[1].set_title('Included EDF')
for ax in axs:
 ax.set_ylabel('Current (A)')
 for label in ax.get_xticklabels():
 label.set_rotation(40)
 ax.xaxis.set_major_locator(locator)
 ax.xaxis.set_major_formatter(formatter)

plt.show()

[image: ../../_images/tutorials_acnsim_lesson2_13_0.png]

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 acnportal	

 	
 	
 acnportal.acnsim.analysis	

 	
 	
 acnportal.acnsim.interface	

 	
 	
 acnportal.acnsim.models.battery	

 	
 	
 acnportal.acnsim.models.ev	

 	
 	
 acnportal.acnsim.models.evse	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	
 	_current_pilot (acnportal.acnsim.models.evse.BaseEVSE attribute)

 	_deadband_end (acnportal.acnsim.models.evse.DeadbandEVSE attribute)

 	_ev (acnportal.acnsim.models.evse.BaseEVSE attribute)

 	
 	_max_rate (acnportal.acnsim.models.evse.DeadbandEVSE attribute)

 	(acnportal.acnsim.models.evse.EVSE attribute)

 	_min_rate (acnportal.acnsim.models.evse.EVSE attribute)

 	_station_id (acnportal.acnsim.models.evse.BaseEVSE attribute)

A

 	
 	acnportal.acnsim.analysis (module)

 	acnportal.acnsim.interface (module)

 	acnportal.acnsim.models.battery (module)

 	acnportal.acnsim.models.ev (module)

 	acnportal.acnsim.models.evse (module)

 	active_evs (acnportal.acnsim.interface.Interface attribute)

 	(acnportal.acnsim.network.ChargingNetwork attribute)

 	active_station_ids (acnportal.acnsim.network.ChargingNetwork attribute)

 	add_constraint() (acnportal.acnsim.network.ChargingNetwork method)

 	add_event() (acnportal.acnsim.events.EventQueue method)

 	
 	add_events() (acnportal.acnsim.events.EventQueue method)

 	aggregate_current() (in module acnportal.acnsim.analysis)

 	aggregate_power() (in module acnportal.acnsim.analysis)

 	allowable_pilot_signals (acnportal.acnsim.models.evse.BaseEVSE attribute)

 	(acnportal.acnsim.models.evse.DeadbandEVSE attribute)

 	(acnportal.acnsim.models.evse.EVSE attribute)

 	(acnportal.acnsim.models.evse.FiniteRatesEVSE attribute)

 	allowable_pilot_signals() (acnportal.acnsim.interface.Interface method)

 	allowable_rates (acnportal.acnsim.models.evse.FiniteRatesEVSE attribute)

 	arrival (acnportal.acnsim.models.ev.EV attribute)

B

 	
 	BaseEVSE (class in acnportal.acnsim.models.evse)

 	
 	batt_cap_fn() (in module acnportal.acnsim.models.battery)

 	Battery (class in acnportal.acnsim.models.battery)

C

 	
 	CaltechACN (class in acnportal.acnsim.network.sites)

 	charge() (acnportal.acnsim.models.battery.Battery method)

 	(acnportal.acnsim.models.battery.Linear2StageBattery method)

 	(acnportal.acnsim.models.ev.EV method)

 	charging_rates_as_df() (acnportal.acnsim.simulator.Simulator method)

 	ChargingNetwork (class in acnportal.acnsim.network)

 	constraint_current() (acnportal.acnsim.network.ChargingNetwork method)

 	constraint_currents() (in module acnportal.acnsim.analysis)

 	
 	count_sessions() (acnportal.acndata.DataClient method)

 	Current (class in acnportal.acnsim.network)

 	current_charging_power (acnportal.acnsim.models.battery.Battery attribute)

 	current_charging_rate (acnportal.acnsim.models.ev.EV attribute)

 	current_charging_rates (acnportal.acnsim.network.ChargingNetwork attribute)

 	current_pilot (acnportal.acnsim.models.evse.BaseEVSE attribute)

 	current_time (acnportal.acnsim.interface.Interface attribute)

 	current_unbalance() (in module acnportal.acnsim.analysis)

D

 	
 	DataClient (class in acnportal.acndata)

 	datetimes_array() (in module acnportal.acnsim.analysis)

 	deadband_end (acnportal.acnsim.models.evse.DeadbandEVSE attribute)

 	
 	DeadbandEVSE (class in acnportal.acnsim.models.evse)

 	demand_charge() (in module acnportal.acnsim.analysis)

 	departure (acnportal.acnsim.models.ev.EV attribute)

E

 	
 	empty() (acnportal.acnsim.events.EventQueue method)

 	energy_cost() (in module acnportal.acnsim.analysis)

 	energy_delivered (acnportal.acnsim.models.ev.EV attribute)

 	estimated_departure (acnportal.acnsim.models.ev.EV attribute)

 	ev (acnportal.acnsim.models.evse.BaseEVSE attribute)

 	EV (class in acnportal.acnsim.models.ev)

 	
 	Event (class in acnportal.acnsim.events)

 	event_type (acnportal.acnsim.events.Event attribute)

 	EventQueue (class in acnportal.acnsim.events)

 	EVSE (class in acnportal.acnsim.models.evse)

 	evse_phase() (acnportal.acnsim.interface.Interface method)

 	evse_voltage() (acnportal.acnsim.interface.Interface method)

F

 	
 	FiniteRatesEVSE (class in acnportal.acnsim.models.evse)

 	
 	fully_charged (acnportal.acnsim.models.ev.EV attribute)

G

 	
 	get_active_evs() (acnportal.acnsim.simulator.Simulator method)

 	get_constraints() (acnportal.acnsim.interface.Interface method)

 	get_current_events() (acnportal.acnsim.events.EventQueue method)

 	get_demand_charge() (acnportal.acnsim.interface.Interface method)

 	get_ev() (acnportal.acnsim.network.ChargingNetwork method)

 	get_event() (acnportal.acnsim.events.EventQueue method)

 	
 	get_evse_by_type() (in module acnportal.acnsim.models.evse)

 	get_last_timestamp() (acnportal.acnsim.events.EventQueue method)

 	get_prev_peak() (acnportal.acnsim.interface.Interface method)

 	get_prices() (acnportal.acnsim.interface.Interface method)

 	get_sessions() (acnportal.acndata.DataClient method)

 	get_sessions_by_time() (acnportal.acndata.DataClient method)

I

 	
 	index_of_evse() (acnportal.acnsim.simulator.Simulator method)

 	Interface (class in acnportal.acnsim.interface)

 	InvalidRateError

 	
 	InvalidScheduleError, [1]

 	is_continuous (acnportal.acnsim.models.evse.BaseEVSE attribute)

 	is_feasible() (acnportal.acnsim.interface.Interface method)

 	(acnportal.acnsim.network.ChargingNetwork method)

L

 	
 	last_actual_charging_rate (acnportal.acnsim.interface.Interface attribute)

 	last_applied_pilot_signals (acnportal.acnsim.interface.Interface attribute)

 	
 	Linear2StageBattery (class in acnportal.acnsim.models.battery)

 	loads (acnportal.acnsim.network.Current attribute)

M

 	
 	max_charging_power (acnportal.acnsim.models.battery.Battery attribute)

 	max_pilot_signal() (acnportal.acnsim.interface.Interface method)

 	max_rate (acnportal.acnsim.models.evse.BaseEVSE attribute)

 	(acnportal.acnsim.models.evse.DeadbandEVSE attribute)

 	(acnportal.acnsim.models.evse.EVSE attribute)

 	(acnportal.acnsim.models.evse.FiniteRatesEVSE attribute)

 	
 	max_recompute_time (acnportal.acnsim.interface.Interface attribute)

 	maximum_charging_power (acnportal.acnsim.models.ev.EV attribute)

 	min_pilot_signal() (acnportal.acnsim.interface.Interface method)

 	min_rate (acnportal.acnsim.models.evse.BaseEVSE attribute)

 	(acnportal.acnsim.models.evse.EVSE attribute)

 	(acnportal.acnsim.models.evse.FiniteRatesEVSE attribute)

P

 	
 	percent_remaining (acnportal.acnsim.models.ev.EV attribute)

 	period (acnportal.acnsim.interface.Interface attribute)

 	phase_angles (acnportal.acnsim.network.ChargingNetwork attribute)

 	pilot_signals_as_df() (acnportal.acnsim.simulator.Simulator method)

 	plugin() (acnportal.acnsim.models.evse.BaseEVSE method)

 	(acnportal.acnsim.network.ChargingNetwork method)

 	
 	PluginEvent (class in acnportal.acnsim.events)

 	precedence (acnportal.acnsim.events.Event attribute)

 	proportion_of_demands_met() (in module acnportal.acnsim.analysis)

 	proportion_of_energy_delivered() (in module acnportal.acnsim.analysis)

Q

 	
 	queue (acnportal.acnsim.events.EventQueue attribute)

R

 	
 	RecomputeEvent (class in acnportal.acnsim.events)

 	register_evse() (acnportal.acnsim.network.ChargingNetwork method)

 	remaining_amp_periods() (acnportal.acnsim.interface.Interface method)

 	remaining_demand (acnportal.acnsim.models.ev.EV attribute)

 	
 	remove_constraint() (acnportal.acnsim.network.ChargingNetwork method)

 	requested_energy (acnportal.acnsim.models.ev.EV attribute)

 	reset() (acnportal.acnsim.models.battery.Battery method)

 	(acnportal.acnsim.models.ev.EV method)

 	run() (acnportal.acnsim.simulator.Simulator method)

S

 	
 	session_id (acnportal.acnsim.models.ev.EV attribute)

 	set_pilot() (acnportal.acnsim.models.evse.BaseEVSE method)

 	Simulator (class in acnportal.acnsim.simulator)

 	
 	station_id (acnportal.acnsim.models.ev.EV attribute)

 	(acnportal.acnsim.models.evse.BaseEVSE attribute)

 	station_ids (acnportal.acnsim.network.ChargingNetwork attribute)

 	StationOccupiedError, [1]

T

 	
 	timestamp (acnportal.acnsim.events.Event attribute)

 	
 	token (acnportal.acndata.DataClient attribute)

 	type (acnportal.acnsim.events.Event attribute)

U

 	
 	unplug() (acnportal.acnsim.models.evse.BaseEVSE method)

 	(acnportal.acnsim.network.ChargingNetwork method)

 	UnplugEvent (class in acnportal.acnsim.events)

 	
 	update_constraint() (acnportal.acnsim.network.ChargingNetwork method)

 	update_pilots() (acnportal.acnsim.network.ChargingNetwork method)

 	update_scheduler() (acnportal.acnsim.simulator.Simulator method)

 	url (acnportal.acndata.DataClient attribute)

V

 	
 	voltages (acnportal.acnsim.network.ChargingNetwork attribute)

	Events

	Event Queue

	Charging Network

	Current

	Sites

Tutorials

Tutorials for getting started with the ACN Research Portal.

	ACN-Data Client Tutorials

	ACN-Sim Tutorials
	ACN-Sim Tutorial: Lesson 1
	Running an Experiment
	by Zachary Lee
	Last updated: 03/19/2019

	Experiment Parameters

	Network

	Events

	Scheduling Algorithm

	Simulator

	Analysis

	ACN-Sim Tutorial: Lesson 2
	Implementing a Custom Algorithm
	by Zachary Lee
	Last updated: 03/19/2019

	Custom Algorithm

	Running the Algorithm

	Results

ACN-Data Client Tutorials

The ACN-Data Dataset is a collection of real-world EV charging sessions which can be used to drive simulations
and analysis. This tutorials will walk you through using the dataset API and the simple acndata library to gather data
from this dataset.

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to ACN-Sim

 		
 ACN-Data

 		
 Data Client

 		
 ACN-Sim

 		
 Simulator

 		
 Interface

 		
 Charging Network

 		
 Current

 		
 Sites

 		
 Events

 		
 Event Queue

 		
 Analysis

 		
 Models

 		
 Battery

 		
 EV

 		
 EVSE

 		
 ACN-Sim Tutorials

 		
 ACN-Sim Tutorial: Lesson 1

 		
 Running an Experiment

 		
 ACN-Sim Tutorial: Lesson 2

 		
 Implementing a Custom Algorithm

 		
 Custom Algorithm

 		
 Running the Algorithm

 		
 Results

_images/tutorials_acnsim_lesson1_21_0.png
Current (A)

70

&0

500

w00

00

20

100

Total Aggregate Current

100

B
Time (periods)

s00

&0

_images/tutorials_acnsim_lesson2_13_0.png
Current (A)

70

&0

500

w00

00

20

100

Our EDF Included EDF
2
£
Ry Ry
R R

2018-5ep-07

2018-5ep-07

